Pharmaceuticals in the Environment

The Secure Medicine Return Bill (HB 1165 / SB 5279) will create a producer-provided medicine return program that is convenient, safe and secure for residents throughout the state. Prescription and over-the-counter medicines will be collected and disposed using the safest technology currently available to help prevent accidental poisonings, drug misuse, and environmental contamination. This background document provides brief summaries and references about detection of pharmaceuticals in our environment and potential impacts on aquatic species and ecosystems.

How Pharmaceuticals get into the Environment

Medicines have been found in small amounts in our streams, groundwater and marine waterways. Medicines enter our environment in two ways:
1. Excretion from our bodies: Humans and animals pass drugs or drug metabolites through their bodies and then these chemicals pass through septic systems or wastewater treatment plants.
2. Direct disposal to sewers or landfills: Medicines can enter the environment when flushed down toilets or sinks or thrown into the garbage. They can pass through septic systems and through wastewater treatment plants.

No one knows exactly how much of the medicines in our environment come from each of these two pathways. We do know that a significant amount of medicines go unused. Unwanted waste medicines can be prevented from entering the environment through collection and safe disposal provided by pharmaceutical take-back-programs. Preventative programs are far more economical than wastewater treatment or cleanup.

Detection of Pharmaceuticals in the Environment

Numerous environmental studies document the presence of pharmaceuticals in surface water, groundwater, soils, sediments, and marine waters. These studies predominantly conclude that pharmaceuticals are present wherever wastewater has been discharged. Conventional wastewater treatment systems do not do a good job of removing or destroying pharmaceuticals. No single treatment process will completely remove all of the thousands of different pharmaceutical compounds. The presence of pharmaceuticals in the environment depends upon their individual chemical structure and the frequency of their use. Some sampling studies are listed below.

- • A water quality assessment of the Columbia River in 2004-2005 detected a number of pharmaceutical compounds including:
 acetaminophen, diphenhydramine (a widely used antihistamine), and trimethoprim (an antibiotic).

- • A recent study of sediment contaminants in the lower Columbia Basin conducted by USGS detected a number of pharmaceutical compounds including: trimethoprim, thiabendazole, diphenhydramine, diltiazem, venlafaxine, fluoxetine, citalopram and carbamazapine at

"There's no doubt about it, pharmaceuticals are being detected in the environment and there is genuine concern that these compounds, in the small concentrations that they're at, could be causing impacts to human health or to aquatic organisms."

concentrations ranging from 2 to 150 ng/g sediment. Additionally, codeine, dehydronifedipine, miconazole, azithromycin and cimetidine were detected at or below the level of the lowest standard (~0.4 and 28 ng/g sediment). The highest frequency of detection for these compounds was found in the tributaries.

A 2004 study in the Sequim-Dungeness region of the Olympic Peninsula detected medicines in effluent from tertiary wastewater treatment plants, including: acetaminophen, codeine, metformin (a diabetes medicine), sulfamethoxazole (an antibiotic), salbutamol (albuterol), carbamazepine (anti-convulsant and bipolar disorder treatment), ranitidine (Zantac), estrone (hormone replacement therapy), trimethoprim (antibiotic), and ketoprofen (NSAID). Metformin was also found in groundwater and wells.

A King County study that evaluated select endocrine disrupting compounds in surface waters detected the hormones ethynylestradiol (birth control pills) and estradiol (a natural estrogen also used in hormone replacement therapy) in some lakes and streams in King County. At some sites, measured levels of these compounds were detected within the range of levels found to cause effects on aquatic species from laboratory studies.

A nationwide survey conducted by the USGS in 1999 studied 139 streams in 30 states for 95 organic wastewater compounds, including some pharmaceuticals. At least 1 medicine was detected in 80% of the sites surveyed. Acetaminophen was found in 23.8% of streams tested, the antibiotic trimethoprim was found in 27.4% of streams tested, codeine was found in 10.6% of streams tested. Concentrations of pharmaceuticals were generally low.

In a 2006 USGS study, scientists detected 12 of the 22 pharmaceuticals evaluated in a Colorado watershed including: diltiazem, cotinine, and sulfamethoxazole, ranitidine, codeine, diltiazem.

A study conducted by NOAA in the Chesapeake Bay detected a number of pharmaceutical compounds and associated metabolites in surface waters including: carbamazepine, erythromycin-HO (an antibiotic degrade), trimethoprim (antibiotic), sulfamethoxazole, diltiazem (anti-anginal medication), fluoxetine (antidepressant) and acetaminophen.

Ground water samples from a landfill site in Oklahoma were analyzed by USGS for pharmaceuticals and other organic waste water contaminants (OWCs). Five sites, four of which
are located downgradient of the landfill, were sampled and analyzed for 76 OWCs. OWCs were detected in water samples from all of the sites sampled, with 22 of the 76 OWCs being detected at least once including an antibiotic and a nonprescription drug. Because the landfill was established in the 1920s and closed in 1985, many compounds detected in the leachate plume were likely disposed of decades ago. These results indicate the potential for long-term persistence and transport of some OWCs in ground water.

- A Florida landfill received waste in 1968 and 1969 from two large naval aviation bases. Although permitted to accept only solid waste, physical evidence suggested it could have received waste from a local hospital. Samples taken from groundwater and drinking water wells located 300 meters from the landfill in 1991 confirmed pentobarbital contamination at 1 ppb. Finding trace amounts of pentobarbital 21 years after the landfill closed and 300 meters from the landfill site, demonstrates the persistence of the pharmaceutical.

- Robinson et al. provide a useful overview of the detection of pharmaceuticals in the environment, emerging information on impacts, and potential mitigation methods – which they suggest include consumer take-back programs for medicines.

Detection of Pharmaceuticals in Drinking Water

Public drinking water supplies are not commonly tested for pharmaceuticals. Sampling in other states has found widespread presence in public drinking water at very low levels. Conventional wastewater treatment systems cannot remove or destroy all pharmaceuticals, so water supplies which are downstream of wastewater treatment discharges from other municipalities may be impacted.

- A 2008 Associated Press story published the results of a nationwide study that found medicines in the drinking water of 24 major metropolitan areas serving 41 million Americans. Some frequently detected compounds were atenolol (heart medication), carbamazepine (mood-stabilizer), gemfibrozil (anti-cholesterol), meprobamate (tranquilizer), naproxen (pain-killer), phenytoin (anti-seizure medication), sulfamethoxazole and trimethoprinn (antibiotics).

Seattle’s drinking water supply tested negative for pharmaceuticals because it is drawn from an uninhabited, pristine watershed. This result is expected for any water supply which is protected from human activities.

Detection of Pharmaceuticals in Fish Tissue

Pharmaceuticals are also being detected in tissue of fish collected from streams.

- EPA completed the first phase of a pilot study to evaluate pharmaceuticals and personal care products (PPCPs) in fish tissue in 2008. Sampling locations were in AZ, FL, IL, NM, PA, and TX. Seven of the 24 pharmaceuticals analyzed were detected in fish tissue and included diphenylhydramine, norfluoxetine sertraline, fluoxetine (antidepressants), carbamazepine, diltiazem and gemfibrozil.

- Antidepressants and their associated metabolites were found in fish in Texas streams. Fluoxetine and sertraline and the SSRI metabolites norfluoxetine and desmethylertraline were detected at levels greater than 0.1 ng/g in all tissues examined.

Studies on Environmental Impacts of Pharmaceuticals

The environmental concentrations of pharmaceuticals are typically low; less than the recommended therapeutic doses for humans. Studies are emerging that suggest exposure to some medicines, or combinations of medicines, in surface waters are sufficient to impact aquatic organisms or ecosystems. Some studies are listed below.

- In a Boulder, Colorado study, the sex ratios of fish upstream from a wastewater treatment plant were 47% female to 53% male, while the ratios of those downstream from the plant were 83% female to 17% male. Researchers speculate this disturbance could be associated with endocrine-disrupting compounds, including a synthetic estrogen, found in the treatment plant effluent.

- In another study, researchers exposed western mosquitofish to fluoxetine, the active ingredient in Prozac, at concentrations similar to those detected in surface waters. They observed increased lethargy enough to indicate behavior changes.

- Another study found potential reduction in aquatic plant growth due to antibiotic exposure. Members of the fluoroquinolone, sulfonamide, and tetracycline classes of antibiotics displayed significant phytotoxicity.

- Outdoor aquatic microcosms were exposed for 35 days to combinations of ibuprofen, fluoxetine, and ciprofloxacin at (6, 10, and 10 μg/L, respectively (low treatment [LT]); 60, 100, and 100 μg/L, respectively (medium treatment [MT]); and 600, 1,000, and 1,000 μg/L, respectively (high treatment [HT]). Few responses were observed in the LT; however, effects were observed in the MT and HT. All responses were observed at concentrations well below the equivalent pharmacologically active concentrations in mammals. Fish mortality occurred in the
MT and HT. Phytoplankton increased in abundance and decreased in diversity (number of taxa) in the HT, with consistent trends being observed in the MT and LT. Zooplankton showed increased abundance and decreases in diversity in the HT, with consistent trends being observed in the MT. Duckweed (Lemna gibba) and water milfoil (Myriophyllum) showed mortality in the HT; growth of L. gibba was also reduced in the MT. Although the present data do not suggest that ibuprofen, fluoxetine, and ciprofloxacin are individually causing adverse effects in surface-water environments, questions remain about additive responses from mixtures.

- Short-term exposure to 17α-ethinylestradiol, the active component in oral contraceptive pills at environmentally relevant levels was found to alter aggression, and shift individual social status and reproductive success in male zebrafish.

Coleman, JR., D Baldwin, LL Johnson and NL Scholz. 2009. Effects of the synthetic estrogen, 17α-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio) Aquatic Toxicology. in press. Available online 7 December 2008.

- English sole from Puget Sound were surveyed for evidence of xenoestrogen (an estrogen compound or mimic) exposure, using vitellogenin (VTG) production in males as an indicator. VTG is a yolk protein produced by the liver in response to estrogens which normally occurs only in sexually mature females with developing eggs. However, males can produce VTG when exposed to environmental estrogens, making abnormal production of VTG in male animals a useful biomarker of exposure. Significant levels of VTG were found in male fish from several urban sites, especially in Elliott Bay, along the Seattle Waterfront. In addition, the timing of spawning in both male and female fish at the Elliott Bay sites appeared altered. These data suggest that English sole in some areas of Puget Sound are exposed to estrogen compounds that may be causing biological effects.

- Changes in reproductive behavior have been found in male bluehead wrasse exposed to fluoxetine, the active ingredient in Prozac. Exposed fish were not able to compete as effectively as those not exposed.

- Brown trout (Salmo trutta f. fario) were exposed to 0.5, 5 and 50 μg/L diclofenac (an NSAID used for arthritis or pain) for 7, 14 and 21 days (the lowest concentration is comparable with concentrations found in the aquatic environment). Fish exposed to diclofenac displayed significantly reduced haematocrit after 7 and 14 days of exposure. After 21 days, trout were examined for histopathological and immunohistological alterations and indicated damage to the liver, gills, and kidney. In general, the study suggests exposure of brown trout to diclofenac at environmentally relevant concentrations can result in adverse effects to various organs and may compromise the health of affected fish populations.

- Effects of three pharmaceuticals - fluoxetine, ibuprofen and carbamazepine - were examined on the activity of the benthic invertebrate Gammarus pulex. Exposure to low concentrations (10–100 ng/L) of fluoxetine and ibuprofen resulted in a significant decrease in activity; however, activity at higher concentrations (1 μg/L–1 mg/L) was similar to the control. Response to carbamazepine showed a similar pattern, however, differences were not significant. These
behavioral effect concentrations were 10^4 to 10^7 times lower than previously reported Lowest Observed Effect Concentrations and in the range of environmentally occurring concentrations.

- Effect of the lipid regulatory drug gemfibrozil (GEM) was examined in goldfish over 96 hours by measuring GEM in blood plasma. A decrease in plasma testosterone by over 50% in fish from all treatments was observed. Results demonstrate that exposure to environmental levels of GEM leads to bioconcentration of the drug in plasma and the potential for endocrine disruption in fish.

- This study evaluated the toxicity of clotrimazole (a fungicide widely used in human and veterinary medicine) on marine microalgae, which are primary producers for the ecosystem. Exposure resulted in a decrease in primary productivity which may in turn have adverse effects on community structure.

- A 7-year, whole lake experiment at the Experimental Lakes Area in northwestern Ontario, Canada showed that chronic exposure of fathead minnow (Pimephales promelas) to low concentrations (5–6 ng/L) of the potent 17-ethynylestradiol led to feminization of males, impacts on gonadal development as evidenced by intersex in males and altered oogenesis in females, and, ultimately, a near extinction of this species from the lake. These observations demonstrate that the concentrations of estrogens and their mimics observed in freshwaters can impact the sustainability of wild fish populations.

Potential Human Health Impacts

Scientists do not yet know the full extent and magnitude of the effects of these chemical compounds on human health. The concentrations of pharmaceuticals in the environment are low and are not likely to be an immediate human health threat. There is limited information available about the potential long-term health effects. Most pharmaceuticals degrade in the environment, but have a quality of pseudo-persistence due to the continual release of these contaminants via use, excretion, and disposal.

- One study found some cause for concern about the exposure of pregnant women and their fetuses to drinking water containing very small amounts of chemotherapy drugs.

- Another study looked at the effect of environmentally relevant levels of a mixture of 13 drugs on human cell function. Human embryonic cells were exposed to a mixture of atenolol, bezafibrate, carbamazepine, cyclophosphamide, ciprofloxacin, furosemide, hydrochlorothiazide, ibuprofen, lincomycin, ofloxacin, ranitidine, salbutamol, and sulfamethoxazole. The drug mix inhibited the growth of human embryonic cells, with the highest effect observed as a 30% decrease in cell proliferation compared to controls. Results suggest that a mixture of drugs at ng/L levels can inhibit cell proliferation by affecting their physiology and morphology. This also suggests that water-borne pharmaceuticals can be potential effectors on aquatic life.

Pharmaceuticals and Puget Sound

- The Puget Sound Partnership’s Action Agenda, December 2008, calls for **implementation of pharmaceutical take-back programs** under its strategy “C.1 Prevent pollutants from being introduced into the Puget Sound ecosystem to decrease the loadings from toxics, nutrients, and pathogens.”

- The Puget Sound Partnership's Water Quality Discussion Paper also states “We know enough from the research conducted with English sole to have concerns about the potential for unintended consequences associated with the levels of EDCs [endocrine disrupting compounds] in wastewater and nonpoint pathways to the Sound. Efforts to reduce EDCs and other pharmaceuticals may have the potential for significant pollutant reduction prior to more costly investments in enhanced wastewater treatment systems.”

- The Washington State Department of Ecology also states on its web site: “In addition, pharmaceutical use in the general population is growing, so more unwanted drugs are generated creating increased environmental concerns.” and “The treatment methods that most POTWs use fail to remove these pharmaceutical compounds from either the wastewater or the biosolids. Therefore pharmaceutical compounds pass through the treatment plant into the receiving waters or remain in the biosolids that are land applied across the state, which has a potential impact on human health and the environment.”

Compiled 2/1/09 from literature research conducted by members of the Medicine Return Project in Washington www.medicinereturn.com, and by researchers at King County’s Department of Natural Resources & Parks and Washington State Department of Ecology’s Environmental Assessment Program.

Margaret Shield, PhD, Local Hazardous Waste Management Program in King County (206) 265-9732 | margaret.shield@kingcounty.gov